STATE INSTITUTE OF ENGINEERING & TECHNOLOGY, NILOKHERI KURUKSHETRA UNIVERSITY, KURUKSHETRA

('A+' Grade, NAAC Accredited)

SCHEME OF EXAMINATIONS FOR MASTER OF TECHNOLOGY in Robotics & Artificial Intelligence Department of Computer Engineering (W. E. F. SESSION: 2021-22)

SEMESTER-I

S. No.	Course Code	Subject	Tea Sc	achiı hedu	ng Ile	Hours/ Week	Examination Schedule & Percentage Distribution			Duration of Exam (Hrs.)	Credit
			L	Т	Ρ		Major Test	Minor Test	Total		
1	MTRA-101	Introduction to Artificial Intelligence	3	0	0	3	60	40	100	3	3
2	MTRA-102	Introduction to Robotics	3	0	0	3	60	40	100	3	3
3	*	Program Elective -I	3	0	0	3	60	40	100	3	3
4	**	Program Elective -II	3	0	0	3	60	40	100	3	3
5	MTRA-115	Artificial Intelligence Lab	0	0	4	4	60	40	100	3	2
6	\$	Program Elective Lab	0	0	4	4	60	40	100	3	2
7	MTRM-116	16 Research Methodology and IPR		0	0	2	60	40	100	3	2
8	***	Audit Course-I 2 0 0 2 100 100		3	0						
		Total				24	420	280	700	•	18

*Pr	ogram Elective -l	**Program Elective -II			
Course No.	Subject	Course No.	Subject		
MTRA-103	Embedded Systems	MTRA-106	Automation in Robotics		
MTRA-104	Fundamental of Internet of	MTRA-107	Advanced Data Structure and Programming		
	Things (IoT)				
MTRA-105	Number Theory and Cryptography	MTRA-108	Speech and Language Processing		

	\$ Program Elective Lab										
MTRA-109	Embedded Systems Lab	MTRA-112	Automation in Robotics Lab								
MTRA-110	Fundamental of Internet of Things	MTRA-113	Advanced Data Structure and programming Lab								
	(IoT) Lab										
MTRA-111	Number Theory and Cryptography Lab	MTRA-114	Speech and Language Processing Lab								

*** Audit Course-I								
Course No.	Subject							
MTAD-101	English for Research Paper Writing							
MTAD-103	Disaster Management							
MTAD-105	Sanskrit for Technical Knowledge							
MTAD-107	Value Education							

Note: 1.The course of program elective will be offered at 1/3rd or 6 numbers of students (whichever is smaller) strength of the class. 2. ***Along with the credit course, a student may normally be permitted to take audit course, however for auditing a course; prior consent of the course coordinator of the course is required. These courses shall not be mentioned for any award/calculation of SGPA/CGPA in the DMC. A certificate of successful completion of the audit course will be issued by the Director/Head of institution.

MTRA-101	INTRODUCTION TO ARTIFICIAL INTELLIGENCE										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
0	0	0	2	00	40	400	2 1 1 1 1 1				
3	U	U	3	00	40	100	з п г S .				
Program Objective (PO)	Familiar with basic principles of AI, capable of using heuristic searches, aware of knowledge based systems, Able to use fuzzy logic and neural networks, Learn various applications domains AI										
Course Outcomes (CO)											
CO1	Understand the basics of the theory and practice of Artificial Intelligence as a discipline and										
	about intelli	gent agents	capable o	f problem form	ulation.						
CO2	Evaluation of stating valid	of different u	ninformed s that the e	search algorith	oms on well form	ulate problem	s alongwith				
CO3	Design and	Analysis of	informed s	search algorithr	ns on well formu	lated problem	IS.				
	Formulate a	and solve giv	en problei	m using Propos	itional and First	order logic.					
CO4	Apply plann Apply reasc	ing and neu oning for non	ral networl -monotoni	k learning for so c Al problems.	olving AI proble	ns.					

UNII-1

Introduction. A.I. Representation, Non-Al &AI Techniques, Representation of Knowledge. KnowledgeBase Systems, State Space Search, Production Systems, ProblemCharacteristics, types of production systems, Intelligent Agents and Environments, concept of rationality, the nature of environments, structure of agents, problem solving agents, problem formulation Formulation of real world problems, Breadth First Search, Depth First Search, Depth LimitedSearch, Iterative Deepening Depth First Search, Bidirectional Search, Comparison of Uninformed search Strategies, Searching with partial information, Sensor-less problems, Contingency problems.

UNIT-2

Generate& test, Hill Climbing, Best First Search, A* and AO* Algorithm, Constraint satisfaction, Game playing: Minimax Search, Alpha-Beta Cutoffs, Waiting for Quiescence

UNIT-3

Knowledge based agents, Wumpus world. Propositional Logic: Representation, Inference, Reasoning Patterns, Resolution, Forward and Backward Chaining.First order Logic: Representation, Inference, Reasoning Patterns, Resolution, Forwardand Backward Chaining. Basics of PROLOG: Representation, Structure, Backtracking. Expert System: Case study of Expert System in PROLOG

UNIT-4

Blocks world, STRIPS, Implementation using goal stack, Introduction to Neural networks:- basic, comparison of human brain and machine, biological neuron, general neuron model, activation functions, Perceptron learning rule, applications and advantages of neural networks. Brief introduction to single layer and multiplayer networks. Non Monotonic Reasoning, Logics for Non Monotonic Reasoning, Justification based Truth Maintenance Systems, Semantic Nets, Statistical Reasoning, Fuzzy logic: fuzzy set definition and types, membership function, designing a fuzzy set for a given application. Probability and Bayes' theorem, Bayesian Networks.

Books and References:

- 1. Elaine Rich and Kevin Knight: "Artificial Intelligence." Tata McGraw Hill.
- 2. Stuart Russell & Peter Norvig : "Artificial Intelligence : A Modern Approach", Pearson Education, 2nd Edition.
- 3. Ivan Bratko : "Prolog Programming For Artificial Intelligence", 2nd Edition AddisonWesley, 1440.
- 4. Eugene, Charniak, Drew Mcdermott: "Introduction to Artificial Intelligence.", AddisonWesley
- 5. Patterson: —Introduction to AI and Expert SystemsII, PHI
- 6. Nilsson : Principles of Artificial Intelligencell, Morgan Kaufmann.
- 7. Carl Townsend, —Introduction to turbo Prologll, Paperback, 1483
- 8. Jacek M. Zurada, Introduction to artificial neural systems, Jaico Publication

MTRA-102		INTE	ODUCTION	TO ROBOTICS								
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 Hrs					
•	•	V	Ū		۰v	100	01113.					
Program Objective (PO)	The objective of this course is to impart comprehensive knowledge of the Robot and its											
	differents pa	lifferents parts needed for design and implementation. The course also aims at developing										
	necessary skills required for efficient infrastructure for Robotics.											
	Course Outcomes (CO)											
CO1	Understand	the basic co	nponents	of robots and di	fferentiate types	of robots and	robot grippers.					
CO2	Model forw joints of a ro	ard and inver obot.	se kinema	tics of robot ma	nipulators and a	lso Analyze for	ces in links and					
CO3	Programme	Programme a robot to perform tasks in industrial applications.										
CO4	Design intel	ligent robots	using sens	sors.								

UNIT-1

Robotics-Introduction-classification with respect to geometrical configuration (Anatomy), Controlled system & chain type: Serial manipulator & Parallel Manipulator. Components of Industrial roboticsprecession of movement-resolution, accuracy & repeatability-Dynamic characteristics- speed of motion, load carrying capacity & speed of response-Sensors-Internal sensors: Position sensors,& Velocity sensors, External sensors: Proximity sensors, Tactile Sensors, & Force or Torque sensors. **UNIT-2**

Grippers - Mechanical Gripper-Grasping force--mechanisms for actuation, Magnetic gripper vaccume cup gripper-considerations in gripper selection & design . Industrial robots specifications. Selection based on the Application

UNIT-3

Kinematics-Manipulators Kinematics, Rotation Matrix, Homogenous Transformation Matrix, D-H transformation matrix, D-H method of assignment of frames. Direct and Inverse Kinematics for industrial robots. Differential Kinematics for planar serial robots

UNIT-4

Robot Applications: Material transfer and machine loading/unloading, processing operations assembly and inspection. Concepts of safety in robotics, social factors in use of robots, economics of robots.

Text Books

- 1. Groover M P, Industrial Robotics, Mc Graw Hill Ltd.
- 2. John J. Craig, Introduction to Robotics, Pearson Education Asia
- 3. Jazar, Theory of Applied Robotics, Springer.
- 4. Ghosal, Robotics, Oxford india.

MTRA-103		Embedded Systems										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3 Hrs.					
Program Objective (PO)	To introduce the complete design of a modern embedded system with functional requirements for hardware and software components including processor, networking components, and sensors, along with applications, subsystem interfaces, networking, and middleware and to show how to understand and program such systems using a concrete platform built around.											
			Course O	utcomes (CO)								
CO1	Understand ker characteristi	ey concepts of e	embedded sys ed Systems	stems like History, d	efinition and Classific	cation, and						
CO2	Complete sys peripheral de	tem design cono evices.	cepts of embe	edded systems for P	rocessor and Memor	ry Organizatio	n and					
CO3	Understand th	ne basics of Mic	rocontrollers a	and assembly Langu	lage programming pr	OCESS.						
CO4	Become awar world applica	e of interrupts a ations	nd deploymer	nt of embedded prod	cessors and supporti	ng devices in	real-					

Introduction to embedded systems: Background and History of Embedded Systems, definition and Classification, Programming languages for embedded systems: desirable characteristics of programming languages for embedded systems, low-level versus high-level languages, main language implementation issues: control, typing. Major programming languages for embedded systems on a Chip (SoC) and the use of VLSI designed circuits.

Unit 2

Processor and Memory Organization: Structural units in processor, Processor selection for an embedded system, Memory devices, Memory selection, Allocation for memory to program segments and blocks and memory map of a system, DMA, Interfacing processor. I/O Devices -Device I/O Types and Examples? Synchronous -iso-synchronous and Asynchronous Communications from Serial Devices -Examples of Internal Serial-Communication Devices -UART and HDLC -Parallel Port Devices -Sophisticated interfacing features in Devices/Ports-Timer and Counting Device.

Unit 3

Microcontroller: Introduction to Microcontrollers, Evolution, Microprocessors vs. Microcontrollers, MCS-51 Family Overview, Important Features, Architecture.8051 Pin Functions, Architecture, Addressing Modes, Instruction Set, Instruction Types. **Programming:** Assembly Programming. Timer Registers, Timer Modes, Overflow Flags, Clocking Sources, Timer Counter Interrupts, Baud Rate Generation. Serial Port Register, Modes of Operation, Initialization, Accessing, Multiprocessor Communications, Serial Port Baud Rate.

Unit 4

Interrupts: Interrupt Organization, Processing Interrupts, Serial Port Interrupts, External Interrupts, Interrupt Service Routines. Microcontroller Specification, Microcontroller Design, Testing, Timing Subroutines, Look-up Tables, Serial Data Transmission. **Applications:** Interfacing Keyboards, Interfacing Displays, Interfacing A/D and D/A Converters, Pulse Measurement, Loudspeaker Interface, Memory Interface.

Books and References:

- 1. John Catsoulis, "Designing Embedded Hardware", O'reilly
- 2. An Embedded Software Primer", David E. Simon, Pearson Education
- 3. Frank Vahid, Tony Givargis, "Embedded System Design", John Wiley & Sons, Inc.
- 4. Karim Yaghmour, "Building Embedded Linux Systems", O'reilly
- 5. Michael Barr, "Programming Embedded Systems", O'reilly
- 6. Alan C. Shaw, "Real-time systems & software", John Wiley & sons, Inc.
- 7. Wayne Wolf, "Computers as Components", Harcourt India Pvt. Ltd.

MTRA-104		Fundamental of Internet of Things (IoT)									
Lecture	Tutorial	Total	Time								
3	0	0	3	60	40	100	3 Hrs.				
Program	This course focuses on the latest microcontrollers with application development, product										
Objective	design and prototyping. This also focuses on interoperability in IoT along with various IoT										
(PO)	Platforms for application development.										
	Course Outcomes (CO)										
C01	Understand	I the various i	network pro	tocols used in lo	ъT						
CO2	Understand system.	I the role of B	ig Data, Clo	oud Computing a	and Data Analytic	s in a typica	al IoT				
CO3	Design a simple IoT system made up of sensors, wireless network connection, data analytics and display/actuators, and write the necessary control software.										
CO4	Build and te	est a complete	e loT syste	m.							

UNIT-1

Introduction to IoT, Sensing, Actuation, Basics of Networking, Communication Protocols 6 Sensor Networks, Machine to Machine Communications. Understanding of the IoT ecosystem, various layers in building an IoT application and interdependencies.

UNIT-2

Introduction to Arduino Programming, Integration of Sensors and Actuators with Arduino, Introduction to Python programming 5 Introduction to Raspberry Pi, Implementation of IoT with Raspberry Pi. Build use cases using Raspberry Pi.

UNIT-3

Introduction to SDN, SDN for IoT, Data Aggregation, Handling and Analytics 4 Cloud Computing, Sensors, Fog Computing 4 Understanding of the various protocols being used in IoT like MQTT, AMQP, REST API.

UNIT-4

Understanding of the IoT platforms like PTC Thingworx and IoT frameworks like MS Azure, Understanding of the usage of these platforms to build applications like Smart Cities and Smart Homes, Connected Vehicles, Smart Grid, Case Study: Agriculture, Healthcare, Activity Monitoring.

Books and References:

- 1. David Etter, "IoT (Internet of Things) Programming: A Simple and Fast Way of Learning IoT," Kindle Edition.
- Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, Stamatis Karnouskos, and David Boyle, "From Machine to Machine to the Internet of Things: Introduction to a New Age of Intelligence," Elsevier Science Publishing Co. Inc, 2014.
- 3. Pethuru Raj and Anupama C. Raman, "The Internet of Things: Enabling Technologies, Platforms, and Use Cases," 1st Edition, Auerbach Publications, 2017.
- 4. Yasuura, H., Kyung C.M., Liu Y., and Lin Y.L., "Smart Sensors at the IoT Frontier," 1 st Edition, Springer International Publishing, 2018.

MTRA-105	Number Theory and Cryptography										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
4	0	0	4	60	40	100	3Hrs.				
Program Objective (PO)	To introduce the concepts and methodology used in the Number Theory and Cryptography.										
			Course	e Outcomes (CO)							
C01	To introduce	the mathematic	al fundament	tals involve in crypt	ography.						
CO2	To describe	the process of p	rimality testir	ng and factorization							
CO2	To understand the strength and weakness of cryptosystems										
CO3	To introduce	the elliptic curv	e cryptograpł	ıy.							

Unit I

Elementary Number Theory: Divisibility, Division Algorithm, Euclidean Algorithm; Congruences, Complete Residue systems, Reduced Residue systems; Fermat's little theorem, Euler's Generalization, Wilson's Theorem; Chinese Remainder Theorem, Generalized Chinese Remainder Theorem-Euler Phi-function, multiplicative property; Finite Fields, Primitive Roots; Quadratic Residues, Legendre Symbol, Jacobi Symbol; Gauss's lemma, Quadratic Reciprocity Law.

Unit II

Primality Testing and Factorization: Primality Tests; Pseudo primes, Carmichael Numbers; Fermat's pseudoprimes, Euler pseudo primes; Factorization by Pollard's Rho method; Simple Continued Fraction, simple infinite continued fractions; Approximation to irrational numbers using continued fractions; Continued Fraction method for factorization.

Unit III

Public Key Cryptosystems: Traditional Cryptosystem, limitations; Public Key Cryptography; Diffie Hellmann key exchange; Discrete Logarithm problem; One-way functions, Trapdoor functions; RSA cryptosystem; Digital signature schemes; Digital signature standards; RSA signature schemes; Knapsack problem; El Gamal Public Key Cryptosystem; Attacks on RSA cryptosystem: Common modulus attack; Homomorphism attack, timing attack; Forging of digital signatures; Strong primes, Safe primes, Gordon's algorithm for generating strong primes.

Unit IV

Elliptic Curve Cryptography: Cubic Curves, Singular points, Discriminant; Introduction to Elliptic Curves, Geometry of elliptic curves over reals; Weier strass normal form, point at infinity; Addition of two points; Bezout's theorem, associativity; Group structure, Points of finite order; Elliptic Curves over finite fields, Discrete Log problem for Elliptic curves; Elliptic Curve Cryptography; Factorization using Elliptic Curve; Lenstra's algorithm; ElGamal Public Key Cryptosystem for elliptic curves.

Reference Books:

- 1. A Course in Number Theory and Cryptography, Neal Koblitz, (Springer 2006).
- 2. An Introduction to Mathematical Cryptography, Jill Pipher, Jeffrey Hoffstein, Joseph H.Silverman (Springer, 2008).
- 3. An Introduction to theory of numbers, Niven, Zuckerman and Montgomery, (Wiley 2006).
- 4. Elliptic curves: Number theory and cryptography, Lawrence C. Washington, (Chapman & Hall/CRC 2003).
- 5. An Introduction to Cryptography, R.A. Mollin (Chapman & Hall, 2001).
- 6. Rational Points on Elliptic Curves, Silverman and Tate (Springer 2005).
- 7. Guide to elliptic curve cryptography Hankerson, Menezes, Vanstone (Springer, 2004).
- 8. Elementary Number Theory, Jones and Jones (Springer, 1998).

MTRA-106	Automation in Robotics									
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
3	0	0	3	60	40	100	3 Hrs.			
Program Objective (PO)	To introduce the concepts of Robotic system, its components and instrumentation and control related to robotics.									
			Course C	Outcomes (CO)						
CO1	Acquire bas	sic Knowledge	e on Robots	6						
CO2	Ability to pr	ocess end eff	ectors and	robotic controls.						
CO3	Analyze Robot Transformations and Sensors									
CO4	Able to und	lerstand Robo	ot cell desig	n and applicatio	ns					

Robot anatomy-Definition, law of robotics, History and Terminology of Robotics-Accuracy and repeatability of Robotics-Simple problems Specifications of Robot-Speed of Robot-Robot joints and links-Robot classifications-Architecture of robotic systems

Unit 2

End Effectors And Robot Controls Mechanical grippers-Slider crank mechanism, Screw type, Rotary actuators, cam type-Magnetic grippers-Vacuum grippers-Air operated grippers-Gripper force analysis-Gripper design-Simple problems-Robot controls-Point to point control, Continuous path control, Intelligent robotControl system for robot joint-Control actions-Feedback devices-Encoder, Resolver, LVDTMotion Interpolations-Adaptive control.

Unit 3

Robot Transformations and Sensors Robot kinematics-Types- 2D, 3D Transformation-Scaling, Rotation, Translation- Homogeneous coordinates, multiple transformation-Simple problems. Sensors in robot – Touch sensors-Tactile sensor – Proximity and range sensors – Robotic vision sensor-Force sensor-Light sensors, Pressure sensors.

Unit 4

Robot Cell Design And Applications Robot work cell design and control-Sequence control, Operator interface, Safety monitoring devices in Robot-Mobile robot working principle, actuation using MATLAB, NXT Software Introductions-Robot applicationsMaterial handling, Machine loading and unloading, assembly, Inspection, Welding, Spray painting and undersea robot.

Reference Books

- 1. S.R. Deb, Robotics Technology and flexible automation, Tata McGraw-Hill Education., 2009
- 2. Mikell P Groover & Nicholas G Odrey, Mitchel Weiss, Roger N Nagel, Ashish Dutta, Industrial Robotics, Technology programming and Applications, McGraw Hill, 2012.
- 3. Carl D. Crane and Joseph Duffy, Kinematic Analysis of Robot manipulators, Cambridge University press, 2008.
- 4. Fu. K. S., Gonzalez. R. C. & Lee C.S.G., "Robotics control, sensing, vision and intelligence", McGraw Hill Book co, 1987.
- 5. Craig. J. J. "Introduction to Robotics mechanics and control", Addison-Wesley, 1999.
- 6. Ray Asfahl. C., "Robots and Manufacturing Automation", John Wiley & Sons Inc., 1985.

MTRA-107	ADVANO	ADVANCED DATA STRUCTURE AND PROGRAMMING											
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time						
3	0	0	3	60	40	100	3 Hrs.						
Program	The goal c	of this course	is to prov	ide an introduct	tion to different o	lata types,	Python and						
Objective	JavaScript programming. The course will discuss topics necessary for the participant to be												
(PO)	able to create and execute programs in Python and JavaScript which are essential												
	ingredients of Artificial Intelligence. The lectures and presentations are designed to provide												
	knowledge and experiences to students that serve as a foundation for continued learning of												
	presented	areas. The f	ocus of the	e course is to p	provide students	with an intr	oduction to						
	programmi	ng, I/O, and \	visualizatior	n using Python a	nd JavaScript pro	ogramming	languages.						
			Course C	Dutcomes (CO)									
CO1	Have knowle	edge of arran	ging data ir	n different ways									
CO2	Describe the	e Numbers, N	lath functio	ns, Strings, List,	Tuples and Dicti	onaries in P	ython						
CO3	Express diff	erent Decisio	n Making s	tatements and F	unctions								
CO4	Understand	and summar	ize differen	t File handling o	perations in Pythe	on							
	Design and	l develop Cli	ent Server	network applica	ations using Java	Script 6. Ja	avaScript to						
	program the	behavior of v	web.										

UNIT-1

Data Structures Arrays and Strings, Algorithm Development, Complexity analysis, Recursion, Linear Data Structures, Stacks, Queues, Circular Queues, Links Lists, Operation – Creations, insertion, Deletion, Circular Lists, Doubly Linked List.

UNIT-2

Trees: Definition, Basic Terminology, Binary Tree, External and Internal Nodes, Static and Dynamic Implementation of a Binary Tree, Primitive Operations on Binary Trees, Binary Tree Traversals: Pre-Order, In-Order and Post-Order Traversals. Representation of Infix, Post-Fix and Prefix Expressions using Trees. Introduction to Binary Search Trees: B+ trees, AVL Trees, Threaded Binary trees, Balanced Multi-way search trees, Implementation of Heap Sort Algorithm. **Graphs**: Basic Terminology, Definition of Undirected and Directed Graphs, Memory Representation of Graphs, Minimum-Spanning Trees, Warshal Algorithm, Graph Traversals Algorithms: Breadth First and Depth First.

UNIT-3

Python Programming Introduction, gitHub, Functions, Booleans and Modules, Sequences, Iteration and String Formatting, Dictionaries, Sets, and Files, Exceptions, Testing, Comprehensions, Advanced Argument Passing, Lambda -- functions as objects, Object Oriented Programming, More OO -- Properties, Special methods, Iterators, Iterables, and Generators, Decorators, Context Managers, Regular Expressions, and Wrap Up.

UNIT-4

JavaScript Basics, Functional programming, Object oriented programming, Client-side applications, Serverside applications, Design patterns and Idioms, Popular frameworks.

Reference Books:

- 1. Theory and Problems of Data Structures by Jr. Symour Lipschetz, Schaum's outline, TMH.
- 2. Data Structures and Algorithms by PAI, TMH.
- 3. Fundamentals of Data structures by Ellis Horowitz and Sartaj Sahni, Pub, 1983, AW.
- 4. Data Structures and Algorithms by A.V. Aho, J.E. Hopcroft and T.D. Ullman, Original edition, Addison-Wesley, 1999
- 5. Data Structures and Program Design in C by Robert Kruse, PHI,
- 6. Shukla, Data Structures using C++, Wiley India
- 7. Introduction to Computers Science -An Algorithms Approach, Jean Paul Tremblay, Richard B. Bunt, 2002, T.M.H.
- 8. Data Structure and the Standard Template library Willam J. Collins, 2003, T.M.H.

MTRA-108		Speech and Language Processing										
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
3	0	0	3	60	40	100	3Hrs.					
Program Objective (PO)	This subject covers the overview and description of automatic speech recognition system.											
			Course C	Dutcomes (CO)								
C01	To learn the c	oncepts in mech	anics of spee	ch								
CO2	To understand	the spectral an	alysis of the s	peech signal and n	oise reduction metho	dology.						
CO3	To implement and use of the statistical approaches for the design and development of AutomaticSpeech Recognition (ASR).											
CO4	Understand th	e formal langua	ge theory of la	anguage processing	and complexity mea	sures.						

Unit I

Mechanics of Speech: Speech Production Mechanism, Nature of Speech Signal, Discrete Time Modeling of Speech Production, Representation of Speech Signals, Classification of Speech Sounds, Phones, Phonemes, Phonetics, IPA and Phonetic Alphabets, Articulatory Features, Auditory Perceptions, Anatomical Pathways from Ear to the Perception of Sound Peripheral Auditory System.

Unit II

Spectral Analysis of Speech Signal: Time Domain Parameter of Speech Signal, Methods of Extracting The Parameters: Energy Filter bank Analysis, Short Time Fourier analysis, Formant Extraction, Pitch Extraction; Noise Reduction Techniques, Spectral Estimation, Feature Analysis: MFCC, PLP, RASTA, PLP-RASTA; TRAP.

Unit III

Statistical Framework of ASR: Probability, Bayes Theorem, Covariance and Correlation, Gaussian Mixture Model, ASR Framework: Feature Extraction, Acoustic Model, Pronunciation Model, Language Model, Decoder; Unit Selection, Limitation of Basic HMM and Applications, Advanced HMM, Refinement of HMM, Hybrid HMM/ANN.

Unit IV

Language Processing: Formal Language Theory: Chomsky Hierarchy, Chart Parsing for Context Free Grammars, Stochastic Language Models: Probabilistic Context-Free Grammar, N-gram Language Models, Complexity measure of Language Models: N-Gram Smoothing, Deleted Interpolation Smoothing, Backoff Smoothing, Class n-grams, Performance of N-gram Smoothing, Adaptive Language Models: Cache Language Models, Topic-Adaptive Models, Maximum EntropyModels.

References:

- 1. Speech and language processing, Daniel Jurafsky and James H. Martin, University of Colorado, Boulder.
- 2. Fundamentals of Speech Recognition, Lawrence Rabiner, Biing Hwang Juang and B.Yegnarayana, Pearson Edition
- 3. Speech Recognition Theory and C++ Implementation, Claudio Becchetti, KlucioPrinaRicotti, Fondazione Ugo Bordoni, Rome, Italy.
- 4. Spoken Language Processing A Guide to Theory, algorithm and system development, X.Huang, A. Acero, H. W. Hon.

MTRA-115		ARTIF	ICIAL INTELI	IGENCE LAB						
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time			
0	0	4	2	60	40	100	3 Hrs.			
Program Objective (PO)	Familiar with basic principles of AI, capable of using heuristic searches, aware of knowledge based systems, able to use fuzzy logic and neural networks, Learn various applications domains AI									
Course Outcomes (CO)										
C01	1. Understand the basics of the theory and practice of Artificial Intelligence as a discipline									
	andabout ir	ntelligent age	nts capable	of problem form	nulation.					
CO2	2. Evaluation	on of differen	t uninforme	ed search algor	ithms on well for	mulate pro	blems			
	alongwith s	tating valid co	onclusions	that the evaluation	on supports.					
CO3	3. Design a	nd Analysis o	of informed	search algorithm	ns on well formula	ated problen	ns.			
	Formulat	te and solve g	jiven proble	em using Propos	itional and First o	rder logic.				
CO4	4. Apply pla Apply reaso	anning and ne oning for non-	eural netwo monotonic	rk learning for so Al problems.	olving AI problem	S				

LIST OF PRACTICALS

- 1. Implement Non-AI and AI Techniques
- 2. Implement any one Technique from the following
 - Best First Search & A* algorithm
 - > AO* algorithm
 - ➢ Hill Climbing
- 3. Implement Perceptron learning algorithm
- 4. Implement a real life application in Prolog.
- 5. Expert System in Prolog-new application
- 6. Implement any two Player game using min-max search algorithm.
- 7. Design a fuzzy set for shape matching of handwritten character

MTRA-109			E	mbedded Systems	s Lab								
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time						
0	0	4	2	60	40	100	3 Hrs.						
Program	This laborate	This laboratory will develop the programming skills in the embedded systems field. Emphasisis given											
Objective	to interface	to interface handling; device driver and application development. Programming of											
(PO)	mobile devices is included.												
			Course O	utcomes (CO)									
C01	To Familiarize	e with programm	ing methods a	and tools for embed	lded systems.								
CO2	To Write effici	ient programs in	C to develop	embedded systems	S.								
CO3	To Program Device Drivers for embedded systems.												
CO4	To Program n	nobile devices.											
	_												

List of practical

- 1. Design an embedded system for traffic light controller using 8051 microcontroller.
- 2. Program for an embedded system in C using GNU development tools.
- 3. Program to demonstrate a simple interrupt handler and setting up a timer.
- 4. Program to create two tasks which trigger blinking of two LEDs at different timings.
- 5. Program to send messages to mailbox by one task and read from mailbox by another task.
- 6. Write an assembly program to configure and control General Purpose Input/Output (GPIO) port pins.
- 7. Program to imlement Buzzer interface on IDE environment.
- 8. To interface and convert Digital to Analog data using DAC in ARM processor.
- 9. To develop, code, configure and test a device driver.
- 10. To implement concurrency and resource management in mobile devices.

MTRA-110		Funda	amentals of lo	oT Lab						
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time			
0	0	4	2	60	40	100	3 Hrs.			
Program Objective (PO)	The objective of this course is to impart necessary and practical knowledge of components of Internet of Things and develop skills required to build real-life IoT based projects.									
	Course Outcomes (CO)									
CO1	Explain the	concept and	Application	n of Internet of T	hings.					
CO2	Illustrate ke	ey technologie	es, Protoco	ls and Standard	s in Internet of Th	nings.				
CO3	Design a si Connectior	mple loT sys is involving P	tem compri rototyping,	sing Sensors, E Programming a	dge Devices and nd Data Analysis	Wireless N	etwork			

List of practical

EXPERIMENT

- 1 Start Raspberry Pi and try various Linix commands in command terminal window:ls, cd, touch, mv, rm, man, mkdir, rmdir, tar, gzip, cat, more, less, ps, sudo, cron, chown, chgrp, ping etc.
- 2 Run some python programs on Pi like: Read your name and print Hello message with name Read two numbers and print their sum, difference, product and division. Word and character count of a given string Area of a given shape (rectangle, triangle and ircle) reading shape and appropriate values fromtandard input Print a name 'n' times, where name and n areread from standard input, using for and while loops. Handle Divided by Zero Exception. Print current time for 10 times with an interval of 10 seconds. Read a file line by line and print the word count of each line.
- 3 Light an LED through Python program
- 4 Get input from two switches and switch oncorresponding LEDs
- 5 Flash an LED at a given on time and off time cycle, where the two times are taken from file.
- 6 Flash an LED based on cron output (acts as an alarm)
- 7 Switch on a relay at a given time using cron, where the relay's contact terminals are connected to a load.
- 8 Get the status of a bulb at a remote place (on the LAN) through web.

MTRA-111			Number	Theory and Crypto	ography Lab						
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time				
0	0	4	2	60	40	100	3 Hrs.				
Program	To be able to implement and analyze algorithms for different encryption techniques. Applications to										
Objective	cryptography	cryptography are explored including symmetric and public-key cryptosystems. To be able to implement									
(PO)	different methods of attacks on data.										
	Course Outcomes (CO)										
C01	To understand	d mathematics b	ehind cryptog	raphy.							
CO2	Students will	be able to imple	ment algorith	ms of cryptography	, including encryption	n/decryption a	Indhash				
	functions.										
CO3	Students will I	pe able to impler	ment various i	network security pra	ctice applications.						
CO4	Identify variou	s attacks and fo	rmulate defer	se mechanism.							
	-										

List of Practical

- 1. Write a program to implement encryption using binary/byte addition.
- 2. Write a program to implement encryption using binary Exclusive-OR (XOR).
- 3. Write a program to implement Triple DES with CBC mode and Weak DES keys.
- 4. Write a program to implement RSA Encryption and Factorization Attacks.
- 5. Write a program to implement Attack on RSA encryption with short RSA modulus.
- 6. Write a program to implement hash generation and sensitivity of hash functions to plaintext modifications.
- 7. Write a program to implement Digital Signature Visualization.
- 8. Write a program to implement RSA Signature.
- 9. Write a program to implement Attack on Digital Signature/Hash Collision.
- 10. Write a program to implement Firewalls and IDS.

MTRA-112		Automation in Robotics Lab								
Lecture	Tutorial	Tutorial Practical Credit Practical Minor Test Total Tim								
0	0	4	2	60	40	100	3 Hrs.			
Program Objective (PO)	This laboratory is intended to provide hands-on experience on industrial robotics manufacturing automation, mobile robotics, and dynamics and control of field robots.									
	·		Course (Dutcomes (CO)						
C01	Explain the	fundamental	s of robotic	s and its compor	nents					
CO2	Illustrate th	e Kinematics	and Dynam	nics of robotics						
CO3	Elucidate th	Elucidate the need and implementation of related Instrumentation & control in robotics								
CO4	Illustrate th	e movement	of robotic jo	pints with compu	ters/microcontrol	lers.				

List of Practical

- 1. Demonstration of Cartesian/ cylindrical/ spherical robot.
- 2. Demonstration of Articulated/ SCARA robot.
- 3. Virtual modeling for kinematic and dynamic verification any one robotic . structure using suitable software.
- 4. Design, modeling and analysis of two different types of grippers.
- 5. Study of sensor integration.
- 6. Two program for linear and non-linear path.
- 7. Study of robotic system design.
- 8. Setting robot for any one industrial application after industrial visit.

MTRA-113		ADV	ANCED DATA	STRUCTURE AND	PROGRAMMING L	ab							
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time						
0	0	4	2	60	40	100	3 Hrs.						
Program	The goal o	f this course	is to provi	de an introduction	on to different da	ata types, P	ython and						
Objective	JavaScript	JavaScript programming. The course will discuss topics necessary for the participant to be											
(PO)	able to cre	able to create and execute programs in Python and JavaScript which are essential											
	ingredients	gredients of Artificial Intelligence. The lectures and presentations are designed to provide											
	knowledge	nowledge and experiences to students that serve as a foundation for continued learning of											
	presented	presented areas. The focus of the course is to provide students with an introduction to											
	programmi	programming, I/O, and visualization using Python and JavaScript programming languages											
			Course (Dutcomes (CO)									
CO1	Have know	ledge of arrai	nging data i	n different ways									
CO2	Describe th	e Numbers, I	Math function	ons, Strings, List	, Tuples and Dict	ionaries in F	^{>} ython						
CO3	Express dif	ferent Decisio	on Making s	statements and F	Functions								
CO4	Understand	and summari	ze different	File handling op	perations in Pytho	n							
	Design and	d develop Clie	ent Server r	network applicati	ions using JavaS	cript 6. Java	Script to						
	program the	e behavior of	web										

List of Practical

- 1. Write a program for Sorting and Searching.
- 2. Implement the Stack Application (Expression conversion etc.)
- 3. Implement the Queue Application (Job scheduling, resources allocation etc.)
- 4. Write a program to implement Linked list.
- 5. Write a program to implement BST operations(Create, Insert, Delete and Traversals)
- 6. Write a program to implement MST using Prim's and Kruskal's Algorithm.
- 7. Implement at least two program using Python programming.
- 8. Implement at least two program using Java script.

MTRA-114			Speec	h and Language P	rocessing Lab								
Lecture	Tutorial	Practical	Credit	Practical	Minor Test	Total	Time						
0	0	4	2	60	40	100	3 Hrs.						
Program	This Softwar	This Software Laboratory focuses on study of speech and the process of natural language in forms of											
Objective	token and t	token and tag some words to make meaningful. This also extracts information and measure the											
(PO)	semantic sim	semantic similarity of sentences.											
			Course	e Outcomes (CO)									
C01	To process th	e basic text in f	orm of Token	ization and Stemmi	ng								
CO2	To study distr	ibutional proper	ties in large s	amples of language	e data								
CO3	To implement	and find semai	ntics based or	n lexical semantics									
CO4	To extract infe	ormation based	on relation										

Case Study 1

Take a sample of sentences and process the text in form of tokenization and normalize this data using stemming

Case Study 2

Take a file of size less than 50MB and then select some word and convert these words to N-grams.

Case Study 3

A part-of-speech tagger, or POS-tagger, processes a sequence of words, and attaches a part of speech tag to each word. Take some adjective of English language and tag it.

Case Study 4

To Measure Semantic Similarity between sentences like sentence of "Harry is running fast" and "Harry is Sprinting"

Case Study 5

To associate each word with a word sense disambiguator to select the right meaning among all possible senses for each word.

Case Study 6

Build a system that will extract structured data, such as tables, from unstructured text and use them for training and valuating models?

Case Study 7

Develop a Model Building in which a machine learning model is trained on a labeled dataset and Improve Performance of Text Classifier

MTRM-116			Research	Methodology ar	nd IPR					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	2	60	40	100	3 Hrs.			
Program Objective (PO)	To enable students to Research Methodology and IPR for further research work and investment in R & D, which leads to creation of new and better products, and in turn brings about, economic growth and social benefits.									
Course Outcomes (CO)										
C01	Understand	Understand research problem formulation.								
CO2	Analyze rese	earch related i	nformation							
CO3	Understand world will be	that today's we ruled by idea	orld is contr s, concept, a	olled by Compute and creativity.	r, Information Technology, but to	morrow				
CO4	Understandii is needless t among stude in particular.	ng that when I to emphasis th ents in general	PR would ta e need of in & engineer	ke such important formation about Ir ing	place in growth of individuals & n ntellectual Property Right to be pr	nation, it omoted				

Meaning of research problem, Sources of research problem, Criteria Characteristics of a good research problem, Errors in selecting a research problem, Scope and objectives of research problem. Approaches of investigation of solutions for research problem, data collection, analysis, interpretation, Necessary instrumentations

Unit 2

Effective literature studies approaches, analysis, Plagiarism, Research ethics, Effective technical writing, how to write report, Paper.Developing a Research Proposal, Format of research proposal, a presentation and assessment by a review committee.

Unit 3

Nature of Intellectual Property: Patents, Designs, Trade and Copyright. Process of Patenting and Development: technological research, innovation, patenting, development. International Scenario: International cooperation on Intellectual Property. Procedure for grants of patents, Patenting under PCT.

Unit 4

Patent Rights: Scope of Patent Rights. Licensing and transfer of technology. Patent information and databases. Geographical Indications.

New Developments in IPR: Administration of Patent System. New developments in IPR; IPR of Biological Systems, Computer Software etc. Traditional knowledge Case Studies, IPR and IITs.

References:

- 1. Stuart Melville and Wayne Goddard, "Research methodology: an introduction for science & engineering students'.
- 2. C.R. Kothari, "Research Methodology: Methods & Techniques, 2nd edition or above, New Age Publishers.
- 3. Wayne Goddard and Stuart Melville, "Research Methodology: An Introduction"
- 4. Ranjit Kumar, 2 nd Edition, "Research Methodology: A Step by Step Guide for beginners"
- 5. Halbert, "Resisting Intellectual Property", Taylor & Francis Ltd ,2007.
- 6. Mayall, "Industrial Design", McGraw Hill, 1992.
- 7. Niebel, "Product Design", McGraw Hill, 1974.
- 8. Asimov, "Introduction to Design", Prentice Hall, 1962.
- 9. Robert P. Merges, Peter S. Menell, Mark A. Lemley, "Intellectual Property in New Technological Age", 2016.

MTAD-101		E	English For	Research Paper W	Vriting							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time					
2	0	0 0 0 - 100 100 3 Hrs.										
Program Objective (PO)	Student will	udent will able to understand the basic rules of research paper writing.										
			Course Ou	tcomes (CO)								
C01	Understar	nd that how to i	improve your	r writing skills and le	evel of readability							
CO2	Learn abo	out what to write	e in each seo	ction								
CO3	Understar	nd the skills ne	eded when v	vriting a Title								
CO4	Ensure the	good quality c	f paper at ve	ery first-time submis	sion							

Planning and Preparation, Word Order, Breaking up long sentences, Structuring Paragraphs and Sentences, Being Concise and Removing Redundancy, Avoiding Ambiguity and Vagueness

Unit 2

Clarifying Who Did What, Highlighting Your Findings, Hedging and Criticizing, Paraphrasing and Plagiarism, Sections of a Paper, Abstracts. Introduction

Unit 3

Review of the Literature, Methods, Results, Discussion, Conclusions, the Final Check. key skills are needed when writing a Title, key skills are needed when writing an Abstract, key skills are needed when writing an Introduction, skills needed when writing a Review of the Literature,

Unit 4

Skills are needed when writing the Methods, skills needed when writing the Results, skills are needed when writing the Discussion, skills are needed when writing the Conclusions Useful phrases, how to ensure paper isas good as it could possibly be the first- time submission.

References:

- 1. Goldbort R (2006) Writing for Science, Yale University Press (available on Google Books)
- 2. Day R (2006) How to Write and Publish a Scientific Paper, Cambridge University Press
- 3. Highman N (1998), Handbook of Writing for the Mathematical Sciences, SIAM. Highman'sbook.
- 4. Adrian Wallwork, English for Writing Research Papers, Springer New York DordrechtHeidelberg London, 2011

MTAD-103			Disa	ster Managemer	it						
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	0	-	100	100	3 Hrs.				
Program Objective (PO)	Develop an understanding of disaster risk reduction and management										
		Course Outcomes (CO)									
C01	Learn to der humanitariar	earn to demonstrate a critical understanding of key concepts in disaster risk reduction and numanitarian response.									
CO2	Critically evan	aluate disaster spectives.	risk reductio	on and humanitar	ian response policy an	d practice from					
CO3	Develop an specific type	understanding s of disasters	of standard and conflict	ds of humanitaria situations.	n response and practic	cal relevance in					
CO4	critically ur programming country or th	nderstand the g in different c ne countries the	strengths a ountries, pa ey work in	nd weaknesses of rticularly their hore	of disaster manageme ne	ntapproaches, plan	ning and				

Disaster: Definition, Factors and Significance; Difference between Hazard and Disaster; Natural and Manmade Disasters: Difference, Nature, Types and Magnitude.

Unit 2

Repercussions of Disasters and Hazards: Economic Damage, Loss of Human and Animal Life, Destruction of Ecosystem. Natural Disasters: Earthquakes, Volcanisms, Cyclones, Tsunamis, Floods, Droughts And Famines, Landslides And Avalanches, Man-made disaster: Nuclear Reactor Meltdown, Industrial Accidents, Oil Slicks And Spills, Outbreaks Of Disease And Epidemics, War And Conflicts.

Unit 3

Study Of Seismic Zones; Areas Prone To Floods And Droughts, Landslides And Avalanches; Areas Prone ToCyclonic And Coastal Hazards With Special Reference To Tsunami; Post-Disaster Diseases And Epidemics Preparedness: Monitoring Of Phenomena Triggering A Disaster Or Hazard; Evaluation Of Risk: Application OfRemote Sensing, Data From Meteorological And Other Agencies, Media Reports: Governmental And Community Preparedness.

Unit 4

Disaster Risk: Concept and Elements, Disaster Risk Reduction, Global and National Disaster Risk Situation. Techniques of Risk Assessment, Global Co-Operation in Risk Assessment and Warning, People's Participation in Risk Assessment. Strategies for Survival. Meaning, Concept and Strategies of Disaster Mitigation, Emerging Trends in Mitigation. Structural Mitigation and Non-Structural Mitigation, Programs Of Disaster Mitigation in India.

References:

- 1. R. Nishith, Singh AK, "Disaster Management in India: Perspectives, issues and strategies "New Royal book Company.
- 2. Sahni, PardeepEt.Al. (Eds.)," Disaster Mitigation Experiences And Reflections", Prentice Hall Of India, New Delhi.
- Goel S. L., Disaster Administration And Management Text And Case Studies", Deep &Deep PublicationPvt. Ltd., New Delhi.

MTAD-105		S	Sanskrit for	Technical Know	ledge					
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time			
2	0	0	0	-	100	100	3 Hrs.			
Program Objective (PO)	Students will be able to Understanding basic Sanskrit language and Ancient Sanskrit literature about science & technology can be understood and Being a logical language will help to develop logic in students									
			Course Ou	utcomes (CO)						
CO1	To get a we	orking knowled	ge in illustric	ous Sanskrit, the	scientific language in th	ne world				
CO2	Learning of	Sanskrit to im	prove brain	functioning						
CO3	Learning of Sanskrit to develop the logic in mathematics, science & other subjects enhancing the memory power									
CO4	The engine knowledge	ering scholars from ancient li	equipped w terature	ith Sanskrit will be	e able to explore the hi	ıge				

Unit -1

Alphabets in Sanskrit, Past/Present/Future Tense, Simple Sentences.

Unit – 2

Order, Introduction of roots, Technical information about Sanskrit Literature

Unit –3

Technical concepts of Engineering: Electrical, Mechanical

Unit -4

Technical concepts of Engineering: Architecture, Mathematics

References

- 1. "Abhyaspustakam" Dr. Vishwas, Samskrita-Bharti Publication, New Delhi.
- 2. "Teach Yourself Sanskrit" Prathama Deeksha-VempatiKutumbshastri, Rashtriya Sanskrit Sansthanam, New Delhi Publication
- 3. "India's Glorious Scientific Tradition" Suresh Soni, Ocean books (P) Ltd., New Delhi.

MTAD-107		١	/alue Educa	ation							
Lecture	Tutorial	Practical	Credit	Major Test	Minor Test	Total	Time				
2	0	0	0	-	100	100	3 Hrs.				
Program Objective (PO)	Understand know about	Inderstand value of education and self- development, Imbibe good values in students and Let the should now about the importance of character									
			Course Ou	itcomes (CO)							
C01	Knowledge	of self-develop	ment								
CO2	Learn the im	portance of Hu	uman values	;							
CO3	Developing	the overall pers	sonality								
CO4	Know abou	it the importance	ce of charac	ter							

Values and self-development –Social values and individual attitudes. Work ethics, Indian vision of humanism. Moral and non-moral valuation. Standards and principles. Value judgements.

Unit 2

Importance of cultivation of values. Sense of duty. Devotion, Self-reliance. Confidence, Concentration. Truthfulness, Cleanliness. Honesty, Humanity. Power of faith, National Unity. Patriotism.Love for nature, Discipline

Unit 3

Personality and Behavior Development - Soul and Scientific attitude. Positive Thinking. Integrity and discipline. Punctuality, Love and Kindness. Avoid fault Thinking. Free from anger, Dignity of labour. Universal brotherhood and religious tolerance. True friendship. Happiness Vs suffering, love for truth. Aware of self-destructive habits. Association and Cooperation. Doing best for saving nature

Unit 4

Character and Competence – Holy books vs Blind faith. Self-management and Good health. Science of reincarnation. Equality, Nonviolence, Humility, Role of Women. All religions and same message. Mind your Mind, Self-control. Honesty, Studying effectively

References

1. Chakroborty, S.K. "Values and Ethics for organizations Theory and practice", Oxford University Press, New Delhi